Copied to
clipboard

G = C8⋊C42order 128 = 27

The semidirect product of C8 and C42 acting via C42/C22=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8⋊C42, C42.22Q8, C4.Q86C4, C8⋊C47C4, C4.5(C4×Q8), C2.D811C4, C4.25(C2×C42), C22.97(C4×D4), C2.3(D8⋊C4), C42.134(C2×C4), C23.736(C2×D4), (C22×C4).673D4, C2.3(Q16⋊C4), C4.49(C42⋊C2), C2.4(SD16⋊C4), C22.56(C8⋊C22), C22.4Q16.46C2, (C2×C42).241C22, (C22×C8).210C22, C2.3(M4(2)⋊C4), (C22×C4).1317C23, C22.45(C8.C22), C2.15(C4×C4⋊C4), (C4×C4⋊C4).11C2, (C2×C8⋊C4).2C2, (C2×C4.Q8).3C2, C4⋊C4.148(C2×C4), (C2×C4).80(C4⋊C4), (C2×C8).140(C2×C4), C22.60(C2×C4⋊C4), (C2×C4).186(C2×Q8), (C2×C2.D8).32C2, (C2×C4).548(C4○D4), (C2×C4⋊C4).752C22, (C2×C4).524(C22×C4), SmallGroup(128,508)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C8⋊C42
C1C2C22C2×C4C22×C4C2×C42C4×C4⋊C4 — C8⋊C42
C1C2C4 — C8⋊C42
C1C23C2×C42 — C8⋊C42
C1C2C2C22×C4 — C8⋊C42

Generators and relations for C8⋊C42
 G = < a,b,c | a8=b4=c4=1, bab-1=a-1, cac-1=a5, bc=cb >

Subgroups: 228 in 136 conjugacy classes, 84 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2.C42, C8⋊C4, C4.Q8, C2.D8, C2×C42, C2×C42, C2×C4⋊C4, C22×C8, C22.4Q16, C4×C4⋊C4, C2×C8⋊C4, C2×C4.Q8, C2×C2.D8, C8⋊C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C8⋊C22, C8.C22, C4×C4⋊C4, M4(2)⋊C4, SD16⋊C4, Q16⋊C4, D8⋊C4, C8⋊C42

Smallest permutation representation of C8⋊C42
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 10 22 90)(2 9 23 89)(3 16 24 96)(4 15 17 95)(5 14 18 94)(6 13 19 93)(7 12 20 92)(8 11 21 91)(25 103 67 105)(26 102 68 112)(27 101 69 111)(28 100 70 110)(29 99 71 109)(30 98 72 108)(31 97 65 107)(32 104 66 106)(33 124 80 86)(34 123 73 85)(35 122 74 84)(36 121 75 83)(37 128 76 82)(38 127 77 81)(39 126 78 88)(40 125 79 87)(41 52 64 114)(42 51 57 113)(43 50 58 120)(44 49 59 119)(45 56 60 118)(46 55 61 117)(47 54 62 116)(48 53 63 115)
(1 36 51 97)(2 33 52 102)(3 38 53 99)(4 35 54 104)(5 40 55 101)(6 37 56 98)(7 34 49 103)(8 39 50 100)(9 124 64 68)(10 121 57 65)(11 126 58 70)(12 123 59 67)(13 128 60 72)(14 125 61 69)(15 122 62 66)(16 127 63 71)(17 74 116 106)(18 79 117 111)(19 76 118 108)(20 73 119 105)(21 78 120 110)(22 75 113 107)(23 80 114 112)(24 77 115 109)(25 92 85 44)(26 89 86 41)(27 94 87 46)(28 91 88 43)(29 96 81 48)(30 93 82 45)(31 90 83 42)(32 95 84 47)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,10,22,90)(2,9,23,89)(3,16,24,96)(4,15,17,95)(5,14,18,94)(6,13,19,93)(7,12,20,92)(8,11,21,91)(25,103,67,105)(26,102,68,112)(27,101,69,111)(28,100,70,110)(29,99,71,109)(30,98,72,108)(31,97,65,107)(32,104,66,106)(33,124,80,86)(34,123,73,85)(35,122,74,84)(36,121,75,83)(37,128,76,82)(38,127,77,81)(39,126,78,88)(40,125,79,87)(41,52,64,114)(42,51,57,113)(43,50,58,120)(44,49,59,119)(45,56,60,118)(46,55,61,117)(47,54,62,116)(48,53,63,115), (1,36,51,97)(2,33,52,102)(3,38,53,99)(4,35,54,104)(5,40,55,101)(6,37,56,98)(7,34,49,103)(8,39,50,100)(9,124,64,68)(10,121,57,65)(11,126,58,70)(12,123,59,67)(13,128,60,72)(14,125,61,69)(15,122,62,66)(16,127,63,71)(17,74,116,106)(18,79,117,111)(19,76,118,108)(20,73,119,105)(21,78,120,110)(22,75,113,107)(23,80,114,112)(24,77,115,109)(25,92,85,44)(26,89,86,41)(27,94,87,46)(28,91,88,43)(29,96,81,48)(30,93,82,45)(31,90,83,42)(32,95,84,47)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,10,22,90)(2,9,23,89)(3,16,24,96)(4,15,17,95)(5,14,18,94)(6,13,19,93)(7,12,20,92)(8,11,21,91)(25,103,67,105)(26,102,68,112)(27,101,69,111)(28,100,70,110)(29,99,71,109)(30,98,72,108)(31,97,65,107)(32,104,66,106)(33,124,80,86)(34,123,73,85)(35,122,74,84)(36,121,75,83)(37,128,76,82)(38,127,77,81)(39,126,78,88)(40,125,79,87)(41,52,64,114)(42,51,57,113)(43,50,58,120)(44,49,59,119)(45,56,60,118)(46,55,61,117)(47,54,62,116)(48,53,63,115), (1,36,51,97)(2,33,52,102)(3,38,53,99)(4,35,54,104)(5,40,55,101)(6,37,56,98)(7,34,49,103)(8,39,50,100)(9,124,64,68)(10,121,57,65)(11,126,58,70)(12,123,59,67)(13,128,60,72)(14,125,61,69)(15,122,62,66)(16,127,63,71)(17,74,116,106)(18,79,117,111)(19,76,118,108)(20,73,119,105)(21,78,120,110)(22,75,113,107)(23,80,114,112)(24,77,115,109)(25,92,85,44)(26,89,86,41)(27,94,87,46)(28,91,88,43)(29,96,81,48)(30,93,82,45)(31,90,83,42)(32,95,84,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,10,22,90),(2,9,23,89),(3,16,24,96),(4,15,17,95),(5,14,18,94),(6,13,19,93),(7,12,20,92),(8,11,21,91),(25,103,67,105),(26,102,68,112),(27,101,69,111),(28,100,70,110),(29,99,71,109),(30,98,72,108),(31,97,65,107),(32,104,66,106),(33,124,80,86),(34,123,73,85),(35,122,74,84),(36,121,75,83),(37,128,76,82),(38,127,77,81),(39,126,78,88),(40,125,79,87),(41,52,64,114),(42,51,57,113),(43,50,58,120),(44,49,59,119),(45,56,60,118),(46,55,61,117),(47,54,62,116),(48,53,63,115)], [(1,36,51,97),(2,33,52,102),(3,38,53,99),(4,35,54,104),(5,40,55,101),(6,37,56,98),(7,34,49,103),(8,39,50,100),(9,124,64,68),(10,121,57,65),(11,126,58,70),(12,123,59,67),(13,128,60,72),(14,125,61,69),(15,122,62,66),(16,127,63,71),(17,74,116,106),(18,79,117,111),(19,76,118,108),(20,73,119,105),(21,78,120,110),(22,75,113,107),(23,80,114,112),(24,77,115,109),(25,92,85,44),(26,89,86,41),(27,94,87,46),(28,91,88,43),(29,96,81,48),(30,93,82,45),(31,90,83,42),(32,95,84,47)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4AB8A···8H
order12···24···44···48···8
size11···12···24···44···4

44 irreducible representations

dim11111111122244
type++++++-++-
imageC1C2C2C2C2C2C4C4C4Q8D4C4○D4C8⋊C22C8.C22
kernelC8⋊C42C22.4Q16C4×C4⋊C4C2×C8⋊C4C2×C4.Q8C2×C2.D8C8⋊C4C4.Q8C2.D8C42C22×C4C2×C4C22C22
# reps12211188822422

Matrix representation of C8⋊C42 in GL8(𝔽17)

216000000
515000000
00620000
007110000
00002151515
000022215
000022152
00001521515
,
130000000
14000000
001150000
001160000
00001211612
000015121
00001612121
000012115
,
160000000
016000000
00400000
00040000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(17))| [2,5,0,0,0,0,0,0,16,15,0,0,0,0,0,0,0,0,6,7,0,0,0,0,0,0,2,11,0,0,0,0,0,0,0,0,2,2,2,15,0,0,0,0,15,2,2,2,0,0,0,0,15,2,15,15,0,0,0,0,15,15,2,15],[13,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,12,1,16,12,0,0,0,0,1,5,12,1,0,0,0,0,16,12,12,1,0,0,0,0,12,1,1,5],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C8⋊C42 in GAP, Magma, Sage, TeX

C_8\rtimes C_4^2
% in TeX

G:=Group("C8:C4^2");
// GroupNames label

G:=SmallGroup(128,508);
// by ID

G=gap.SmallGroup(128,508);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,1430,142,1018,248,1411,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^4=c^4=1,b*a*b^-1=a^-1,c*a*c^-1=a^5,b*c=c*b>;
// generators/relations

׿
×
𝔽